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Abstract

An algorithm is presented for updating finite element models based upon a minimization of dynamic
residuals. The dynamic residual of interest is the force unbalance in the homogeneous form of the equa-
tions of motion arising from errors in the model's mass and stiffness when evaluated with the identified
modal parameters. The present algorithm is a modification and extension of a previously-developed Sen-
sitivity-Based Element-By-Element (SB-EBE) method for damage detection and finite element model up-
dating. In the present algorithm, SB-EBE has been generalized to minimize a dynamic displacement
residual quantity, which is shown to improve test-analysis mode correspondence. Furthermore, the algo-
rithm has been modified to include Bayesian estimation concepts, and the underlying nonlinear optimiza-
tion problem has been consistently linearized to improve the convergence properties. The resulting
algorithm is demonstrated via numerical and experimental examples to be an efficient and robust method

for both localizing model errors and estimating physical parameters.
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Nomenclature

Nominal mass, damping and stiffness matrices
Experimental frequency (rad/s) for made
Experimental mode shape vector for mode
Dynamic residual (modal force) vector
Undamped impedance matrix for made
Measured, unmeasured partitiong df

Change in parameter vector (il = p(k) - p(k_l)

at iteraton
Mode shape projection operator

Parameter sensitivities for mode

Objective function, linearized gradient and Hessian

Variation of projected mode shape due\o

Approximate covariance matrix of dynamic residual

Covariance matrix of measured mode shape

Covariance matrix of the experimental eigenvalues

Covariance matrix of the initial parameters

Mass-weighted modal assurance criteria

. Introduction

)

A significant amount of research in structural dynamics system identification has focused on methods

for reconciling finite element models of structures with modal parameters identified from dynamic testing.

Early approaches to this problem involved the direct updating of assembled stiffness and mass matrices tc

correlate to the available modes and mode shapes identified from test. In order to choose a particular so-

lution from an infinite number of possible solutions, some quantity, such as the norm of the matrix adjust-

ment, was minimizeéef. Recent modifications to this general approach involve retaining the connectivity

pattern of the model through constrafft§ or minimizing the rank of the matrix upda&t&hese methods

are efficient and have been used successfully for both model adjustments and for structural damage detec



tion. When used in the context of model validation, the adjusted matrices are intended to guide the analyst
in revising the finite element model’s global and elemental parameters in a manner consistent with the spe-
cific design, the underlying physics, and the finite element method. For this discussion, this class of meth-
ods can be termed optimal matrix updating.

A fundamentally different approach involves estimating or updating the “physical’ parameters of the
structural design, such as cross-sectional areas, elastic moduli, or added masses, used in the finite eleme
model definitior:8:2.10 There are a number of advantages to such an approach over optimal matrix updat-
ing methods. First, the formulation of the initial model, including its connectivity, is implicitly preserved.
Secondly, results of model updating can be understood in terms of errors in design parameters or modeling
assumptions. This provides a mechanism, at least ideally, for learning and improving the future modeling
of similar structures. Finally, the updated model is directly useful for design sensitivity analysis as it re-
tains the form of the finite element model data, without requiring additional interpretations such as is the
case with the optimal matrix updating approach. It should be noted, however, that the generality and utility
of the updated model depends critically on the selection of parameters to be adjusted, and thus the selectiol
of parameters (i.e. model error localization) can itself introduce significant error. The approach of estimat-
ing model parameters is termed sensitivity-based model updating, as it utilizes the sensitivity of predicted
and estimated quantities, such as modal parameters or response functions, to the physical parameters «
the model.

The present paper addresses the problem of sensitivity-based model updating through the minimiza-
tion of a dynamic residual. This residual arises due to errors in the model stiffness and mass matrices anc
is a reflection of the difference between the model’s predicted modal parameters and the modal parameters
from experimental data It is a different approach, however, from directly comparing the predicted and

measured modal parameters and does not require the computation of the model modes and determinatio



of the correspondence between the model modes and the test modes. This is a distinct advantage, both i
terms of computational expense and in reducing the complexity to the user, since such mode-to-mode cor-
respondence can be difficult to establish when significant modeling errors exist. The present algorithm is
a modification and extension of a previously-developed Sensitivity-Based Element-By-Element (SB-
EBE) method for finite element model updafihdieme22 provides a more detailed literature review and
comparison of SB-EBE and other sensitivity-based algorithms for the interested reader.

The modifications of the basic SB-EBE algorithm address a number of practical issues encountered
when applying the algorithm to complex structures. First, a consistent linearization of the governing min-
imization problem is derived to improve the rate of convergence of the algorithm. The new linearization
couples the mode shape projection and parameter estimation stages of the algorithm at a minor computa
tional cost, and improves the estimate of curvature in the optimization space. Secondly, the residual gov-
erning the update problem is redefined as a displacement, rather than force, quantity through a flexibility
weighting. It is shown that this weighting improves the correspondence of test and analysis modal param-
eters typically used to assess the model’s accuracy. Finally, Bayesian estihmmtimsorporated to con-
dition the update problem. Bayes estimation involves the use of relative confidence measures for the
parameters being updated and the observed data used to guide the estimation. This important modificatior
leads to a more reliable algorithm, especially in the presence of small sensitivity coefficients, large model
errors, and correlation between parameters.

The remainder of the paper is organized as follows. In Section 2, the basic SB-EBE theory and algo-
rithm is reviewed. In Section 3, the new modified algorithm is developed theoretically and its implemen-
tation is detailed in Section 4. Numerical and experimental results are given in Section 5, and Section 6

offers concluding remarks.



II.  Review of Basic Theory and Algorithm

The governing equations for linear time-invariant structural dynamics are typically given as
Mg+ Cq+Kqg = Bu 1)

whereK, C, andM are the stiffness, damping, and mass matrices from the finite element gqiedelec-
tor of displacementsy is a vector of applied forces, aBd maps those forces to the associated degrees of
freedom of the model. The homogeneous form of Eqn. (1) leads to the following undamped generalized

eigenproblem:
Ko = AM@ (2)

whereA is the eigenvalue, which is equabirq)2 , the square of the undamped natural frequeqcy, and
is the associated eigenvector, which is physically the normal (i.e. undamped) mode shape.
The basic SB-EBE theoWdetermines the chandp  to a set of physical parameters of the model

which minimize the norm of the dynamic force residual, viz.
. 2]
oY IRl ©
R, is the dynamic force residual for modelefined as
_ 2
R = (K- M)gg (4)

wheremEi is an experimentally-determined normal frequency of the structure for naodiep; is the
associated normal mode shape. Unfortunately, the degrees of freedom (DOF) at which the mode shape i
sampled from test is typically much smaller than the number of DOF in the finite element model which
definesK andM. Therefore, to apply Eqn. (4), either the model must be reduced to the measurement DOF,

or the measured portion of the mode shape must be expanded to the displacement basis of the model. Th



original SB-EBE algorithm uses an expansion of the experimental mode shapes to compute the dynamic
residual, which is advantageous because it provides an estimate of the dynamic residual in terms of the full
displacement set of the model, facilitating error localization.

The theoretical basis for correcting the model using the dynamic force residual is as follows. If the

“correct” model is given as

DKC = K+AK E (5)
EMC = M+AM[
and from Eqn. (2)
2
(Kc_wEiMc)(pEi =0 (6)
then
2

Hence,R; is a function of both magnitudes and spatial locations of the model errors. The basic Hemez
algorithm consists of three key steps: mode shape projection, error localization (parameter selection), and
parameter estimation. The algorithm is iterative; the mode shapes are projected using the current model
(which is in error), and then the projected shapes are used in computing the parameter updates. The mode
mass and stiffness matrices are then updated at each iteration with the parameter variations and the ne»
iteration begins. Thus as the iterations proceed, the model and hence the mode shape projections improve
leading to better parameter estimates and so on. The iterations conclude when the magnitude of the pararr
eter variations fall below a user-defined threshold. The algorithm steps are detailed in the following sub-

sections.



A. Mode Shape Projection

To derive the proper projection operator from Eqgn. (3), we must partition the modegshape  into its
measured and unmeasured components, and also partition the associated columns of the mass and stiffne

matrices. Then

Py
1

2
(K—wEiM)(pEi

HKm Ky - [ Mtj}%wjmg

0O

(8)

wherecpEm is the mode shape for mads the measurement DOg,  is the unmeasured portion of the

same mode shape, akd, M = K , dng are the measured and unmeasured column sets of the stiff:

(¢]
ness and mass matrices. The mode shape projection directly results from minimizing the dynamic residual
with respect tap, , assuming no change in the model parameters, viz.

. T
min R R, (9)
0]

Defining Z; = K —wEM as the dynamic stiffness of maddend partitioningZ, into sets anal , the

residuaIRi can be written as

fPem O
R = [zmi ZOJ 00 (10)
0% O
Therefore, the minimization problem is
. T T T,T TT
erm (pEmZmiZmi(pEm + 2(poizoizmi(pEm + (poizoizoi(poi (11)
O

which leads to the mode shape projection
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After the projection operatd?;  for modes determined, the mode shape is projected and the dynamic

force residuaR; with respect to the model DOF can be computed. The force residual is then given by

Ri = Zjog, = [Zmi ZoJ |

T, LT, |%Em
~(Z0iZ01)  ZoiZmi (13)

_ T, T, LT
- E_Zoi(zoizoi) Zoi%mi(pEm

B. Error Localization

Recalling Eqn. (7), the DOF exhibiting the largest force residuals will be associated with the set of
model elements whose parameters are significantly in error. Therefore, it is reasonable to select those pa:
rameters which cause the largest perturbations to the element matrices associated with a set of model DOI

j» whereR(j) is above some threshold level. In the original SB-EBE method this process is termed “zoom-

ing.”
C. Parameter Estimation
The final step, after projecting the mode shapes and choosing which model parameters to vary, is to

compute the updated parameter values which minimize the sum of dynamic force residuals over a set of

modes, Viz.

. T
nAISIZ R R (14)



The estimator is determined by expandRg in a first-order

variationsAp :

R+OR = Zg+ 5D E(A
i i i? ;%%D pJ
= R +B.Ap
where

0Z, oK, ,0OM,

— __Q) e

op;  Op; Eiop
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andR; is computed from Eqn. (8) using the projected mode sbg;ilpe

Taylor series with respect to the parameter

) (15)
7, (16)

ij a_pj(pi

obtained from Eqn. (1B, Here,

is the sensitivity oR,  to the parameters being updated. Plugging Eqgn. (15) into Egn. (14) and minimizing

with respect to the parameter variatidsjs  , we have
GAp = —g

where

and the update is given as

Ap= —G_lg
oK
K = K+ZT(APJ)
7 °Pj
oM
M=M+ XEK(ADJ')
J J

(17)

(18)

(19)



lll.  New Algorithm: Theory

The motivation for developing a new algorithm based upon the SB-EBE method came from tests of
that algorithm on a moderately simple beam structure which will be reviewed in a later section. These tests
revealed a number of problems, including small magnitude parameter updates leading to slow conver-
gence, and convergence to poor solutions as measured by frequency errors and mode shape correlations

Based on the above concerns, the basic theory and algorithm was re-worked to incorporate:

» Consistent linearization of the optimization problem
» Generalization of the modal error vector
 Inclusion of Bayesian estimation concepts to regularize the updating equations

We now proceed to detail these modifications.
A. Consistent linearization of the optimization problem

The solution proposed by the basic algorithm is staggered in the following sense. Although the model
is being adjusted in the overall procedure, this adjustment is ignored in the determination of the mode
shape projection. While this simplifies the theory somewhat, it may introduce a serious computational
cost. By ignoring the coupling between the projection and the parameter estimation, the curvature of the
parameter space is poorly estimated. The result is that the curvature is artificially large, leading to smaller
parameter changes and much slower convergence.

This problem can be alleviated by adding a correcigp to the projected partition of the mode
shapes which accounts for the mode shape dependence on the parameter variation in a consistent manne

Using

T

-1_7T
_(Zoizoi) ZoiZmi(pEmi"'&poi

I:)oi(pEmi"' 6(poi

@oi (20)
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the residuaR; is given as

R +0R EZ g EIA E( +0
! . = (p
g %TD 0 !
(21)
. DZ,_ O
= R +BAp + Z,0¢,; + ; %5%%‘“’1
and the minimization problem (ignoring terms higher than second-order) is
min J =Y J (22)
Ap! 6('p0| |Z I
where
T T,T T,T T,.T
J; = RA R +2Ap B (R +Z,00,;) +209,; Z,R; +Ap (B, B;)Ap (23)
+ 6(I:)OI ZOI 0I5(p0I + 2R Z B 6(pOIEApj
The first-order conditions are:
TDazoiDDTé T, _
aAp E’ZBUB@AFH'ZEBU 0|+Ri %Apj% (poi+|ZBini =0
(24)

d0J _ DazoiDT U _
65([) (ZOI 0|)5¢0|+ZDZO| ij %APE Ri%ﬁpj =0

. T T
sinceZy R = Z,i(1 -Z (28250 Zo|)z i®emi = 0 -

Thus, the linearized coupled system of equations is given as:

11
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Finally, noting the special form of Eqn. (25), the mode shape perturbatpgps can be eliminated to yield

the new parameter estimator

GAp = —g
. (27)
UAp = -G ¢
where
G = Z(B B.) - Z%:(zoI o) CTE
(28)

T

G- Z%:(Zm o) CD

andG, g are given by Eqn. (18).

Comparing Eqgn. (18) to Egn. (28), it is seen that the consistent linearization changes the curvature of
the design spac@ , generally reducing its magnitude. This formulation introduces only a modest increase
in computations as the factorizationZ)}iZOi is already computed during the mode shape projection step

and thus can be saved for use in Eqn. (28). The introduction of this consistent linearization, however, dra-

12



matically improves the convergence of the algorithm, as will be shown in the numerical example problem.
B. Generalization of the modal error vector

The objective function selected for the optimization problem, Eqgn. (3), is by no means the only clear
choice for performing finite element model update. Its advantage is that it does not require solving for the
modes of the finite element model, and tracking those analytical modes with respect to the test modes. Its
disadvantage, however, is that the updated model may not improve the errors between the analysis and te:
frequencies, or improve the correlation of the mode shapes. In fact, these accuracy indicators may be sig-
nificantly degraded, and the resultant model cannot be judged as accurate as the initial model.

In seeking to understand the convergence of the basic algorithm to poor solutions as measured by er-
rors in the updated frequencies and mode shapes, it is helpful to compare the dynamic residual to tradi-
tional modal parameter-based error metrics. First, we can re-write the contribution of tootle
objective function in equivalent modal parameter terms, viz.

RR = a Z(w-z—ooz_)z(MAC--) (29)
i i s i E; 1]

wherej ranges over all possible modes of the finite element model, and

_ (0T Mg,
@; MQg; T
MAC, = L_El a; = (9g) Mo, (30)

D (0] M) (9 Moy

Here WC” is a mass-weighted variant of the Modal Assurance Crit&righich is a normalized
measure of the correlation between two mode shapes, in this case modebmdbdest mode The pa-
rametera; is the modal mass of the test mode shape. From Eqn. (29), the contribution to the overall dy-
namic force residual from test modis equivalent to summing up the squares of the differences between

test eigenvalueand each of the eigenvalues of the model, which are scaled by the correlation between the

13



test model shape and the associated model mode shape. Thus, if small correlations exist between the te:
mode shape and any model mode shapes with vastly different frequencies, the prc()dﬁc% mﬁi)z
(which is large) with a small correlation coefficiehvltA—Cij can lead to a term which can dominate the
error index being minimized. This has the undesirable effect of biasing the algorithm away from reconcil-
ing test and model modes which correspond more closely in both mode shape and frequency.

To alleviate this problem, we can replace the modal force error by a generalized modal error

R = WR, where

f
—=——U (MAC;) (31)
0

This result can be obtained approximately by defivhgs

1
w = K or Mkt (32)
which implies that the generalized modal error is a dynamic displacement residual quantity, rather than a
dynamic force residual. In this way, the problem of large error terms resulting from small correlations be-

tween modes with large differences in frequency has been mitigated by normalizing the error 'm%iex by
C. Including Bayesian estimation concepts

Although the parameters being estimated usually evolve from some nonzero initial estimate, the basic
algorithm places no relative confidence on these initial values with respect to the test data used for model
adjustment. The quantitative result is that there is no penalty placed on the magnitude of the parameter
change. Therefore, any final parameter value, no matter what magnitude or sign, is judged as superior to
the original estimate as long as the sum of the dynamic force residuals have been reduced. In actuality,

there are usually both hard constraints placed on the parameter values and some degree of confidence i
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the initial parameter estimates. Furthermore, the test data used for model adjustment is often imperfect,
and the confidence in the data varies depending on whether frequency or mode shape component estimate
are being considered.

A popular approach in estimation theory to address the aforementioned concerns is the use of Bayesiar
estimatiod3. For linear structural dynamics applications such as the present model updating problem,
Bayesian estimation reduces to a generalized least-squares grabkewan modify the performance in-

dex of the basic algorithm as follows:

min J (33)
Ap, Poi
where
Ny 1= T -1
J = Z R Q "R +Ap QpAp
. T T .7

Q = diadZ;P;Qq, P Zi+Q -MP;(@n@n)P; M)

Qp is the covariance matrix of the initial parameters being estim@;;d, Is the covariance matrix of the

components of measured mode sha@wi2 is the variance of the square of the measured modal frequen-

cy, andP; is the mode shape projection matrix. The covariance r@atrix  represents the variances of each
component of the dynamic residual vect®s . The covariance matrices for th@gmqta, Qmizand , are
ideally obtained from statistical analysis of the measured data, while the covariances for the parameters,
Qp, are usually assumed relative to the other covariance matrices and is intended to reflect the confidence
in the initial parameters values relative to the confidence in the data used for revising the parameters. See
Appendix A for an detailed description of how the covariances matrices were obtained in the experimental
example problem of Section V.

The primary difficulty in introducing the Bayesian estimation concept, or equivalently a maximum

15



likelihood estimator, is that the error quantity being minimized is not directly a measured quantity, hence
the covariance being introduced is not simply the variances of the test data. Instead, the dynamic residual
is a nonlinear function of the data, the model matrices and the mode shape projection. The mode shape
projection is itself a function of the model and based on the minimization of the overall functional. Al-
though introducing statistical measures can, in general, increase the robustness of the algorithm, this ap-
proach leads to nonlinearities because the mode shape projection and modal error covariance estimates a

coupled.

IV. New Algorithm: Implementation

In this section we review the step-by-step procedure for the new modified algorithm and discuss im-
plementation issues. The procedure is given in Box 1 and represents one pass or iteration through the up
dating algorithm. Because of the inherent nonlinearity of the optimization, convergence to a solution can
require many iterations. As noted previously, the mode shape projection and residual covariance compu-
tation given in Step 2b is actually a coupled problem, because the projection is dependent on the scaling
provided by the covariance matrix, while the covariance matrix depends on the projection. In the present
work, this nonlinearity is handled in a very cursory manner by computing an initial estin@te of using
only the measured component of the mode shapes. This initial estin@te of  is used to compute an esti-
mate of the mode shape projection. The mode shape projection estimate is used to re-compute a better e:

timate of Q. , which is then used to complete the algorithm. This predictor-correction approach to

i l
estimatingQ; seems to work adequately for the applications studied. Other possibilities might include us-

ing a completely different mode shape projection algorithm to contpute
A. Control of Curvature Estimate

As mentioned in the preceding sections, a consistent linearization of the optimization is employed in

16



Box 1: Summary of the Present Algorithm

Step 1.

Step 2.

Step 2a.

Step 2b.

Step 2c.

Step 2d.

Step 2e.

Step 2f.

Step 3.

Step 4.

Given

]
)
JES
O

K .
k= =, ]=1...,n
KiM,py, Qp  [0P; 0P; ’ °g

g E . O _
EwEi,(pmi, Qwiz, Q(pmi,l =1, .., NE J=09g=0G = Qp

For modesi=1to N

FormZ

= W(K—wéM) and partition int@; = [Zmi ZoJ

ComputeQ; using Eqn. (34actor ZZiQi_lzoi andsolve the mode shape projection:

T -1 T -1
(Z6iQi Zoi)Poi = ~Z6iQi Z
@i = F>oi(pmi
- R, _ K 2 OM
ComputeR; = Z;¢, , sensitivitie8; = [bil b5 .. binp] whetu;J WDapj ‘*’Eap ;
_ T BK, o,0MO
Computec; = [Cil Cip --- Cinp] , where;; = Q "2, +RIQT WEPT, W, apjg

2
=k
<
)

(9]
c
S

Solve

Update

(ZIiQi_lZoi)di = G

T -1
0= I+ RQ, R

T -1
Jo = g+ B Q'R
O

G = G+BQ B -¢q,

GAp = —g

K M
K:K+¥E‘§—mﬁﬁpj M:M+Zg—m%ﬁpj p= pytAp
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the modified algorithm to improve its convergence properties. Caution must be exercised, however, as this
linearization does not guarantee a positive-definite hessian. The present procedure offers two mechanism:
for controlling the curvature to avoid this result. The first is the use of Bayes estimation, which conditions
the estimation problem by contributing a penalty term on the change in the parameter estimates. Numeri-
cally, this term provides a positive-definite contribution to the hessian which can be adjusted to reflect the
analyst’s relative confidence in the initial parameter estimates.

The second mechanism for controlling the curvature estimate is through the use of a fonstant  which
parameterizes the linearization between that of the basic algaifghn0) and the modified algorithm

(B = 1) . This parameterization is utilized during the computatioGof in Step 6 of the procedure as
= _ =, oT~-1 T
G = G+ B Q,"B;—B(c; d)) (35)

This constant controls the degree of coupling between the mode shape projection and the parametel
estimation. Note that the basic algorithm is always guaranteed positive-definite, but that guarantee comes
at the cost of a poorer estimate of the curvature. The use of the parBmeter allows that cost to be con-

trolled by the user.
B. Model Reduction

Rather than projecting the mode shapes, reduction of the model to the measurement degrees of free
dom can be employéd This is often avoided because the static reduction of a refined model down to the
small number of DOF measured will introduce errors in the predictive accuracy of the model, leading to
nonzero dynamic residuals and inappropriate parameter corrections. A compromise is to employ a com-
ponent mode synthesis type of reduction such as the Hurty/Craig-Bampton tethHjguieich augments
a static condensation to the measurement DOF with a set of generalized DOF spanning the lowest eigen:

modes of the omitted dynamics. Typically, the addition of a small number of generalized DOF is sufficient
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to ensure that the reduced model can predict the lower eigenmodes of the full-order system. The intent is
to guarantee that the differences between the experimental modes and the modes of the reduced model al
primarily a function of the parameters of the full model and are not strongly influenced by the model re-

duction itself. The experimental modes would then be projected into this slightly larger subspace.
C. Statistical Significance of the Parameter Estimates

An advantage of Bayes estimation is that it allows the analyst to assess the confidence intervals for the
final estimates of the parameters, as a function of their initial covariances, their sensitivity to the experi-
mental modal parameters used in the estimation, and the covariances of those pardnigteasized

estimate of the covariance of the updated parameters is given by

1 -1
) TD} (36)

(jp =G = [Q?* ZEBiTQi_lBi ~6(Z5iQ Zo) € O

(l [

evaluated at the point of convergence. From this result, the standard deviation of the parameters can be
determined by taking the square root of the diagonal eIemeﬁj§ of . This statistical quantity is only as

valid as the covariances of the experimental data and the initial parameters. The updated variances relative
to their initial values are useful in determining whether the change in parameters is significant and based

on the measured data.

V. Applications

A. Numerical Data: Planar Truss Structure

The first example from Reference 10 was chosen to test the implementation of the modified algorithm
and assess its performance relative to the basic SB-EBE procedure. This example considers a free-free ple

nar truss with 44 translational DOF, 7 of which are measured. For this comparison, the first 5 flexible
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modes are used to update the model, and the only parameters being updated are the elastic modulus of tw
of the elements. Furthermore, the test data is assumed to be perfect (zero variance), which implies that the
Bayesian covariance weights are not used. Thus the only differences between the two algorithms are the
consistent linearization of the optimization problem and the weighting of the modal force error.

The results are documented in Table 1. Note that, although the use of the flexibility weighting does
help to speed the convergence, it also introduces a computational overhead, especially when the weighting
matrix is full rather than sparse. Note also that updating the weighting matrix at each iteration as the stiff-
ness was updated did not improve the convergence of the algorithm. The need for weighting the modal
error vector is dictated more by the quality of the final solution when the data is imperfect than by the con-
vergence of the algorithm. Finally, it was found that using the full extent of the consistent linearization led
to a negative curvature which caused the algorithm to diverge. Therg@fore, was reduced to 0.95, which
results in the fastest convergence. The CPU times given are for simple3Viatialementation of the al-
gorithms running under Matlab Vers. 4.2c on a HP700 workstation. The numbers shown are the mean of
the estimated times from 30 identical analyses as computed usicjgutimee  function in Matlab.

Table 1: Comparison of Convergence Using Modified Algorithm

# update CPU time

Method Weighting Matrix iterations (sec)
Basic SB- N/A 180 12.24
EBE
Modified W=l 25 2.30
B = 0.95 (modal force error minimization)
Modified + 8 2.44
W = K
B =0.95 0
(held constant)
Modified + 9 3.55
W = K
B =0.95 up

(updated each iteration)

The cases documented above were based upon the same convergence criterion. The parameter resul
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for the basic SB-EBE algorithm and the modified algorithm Wthl are shown in Figure 1. Note here
that, even at 180 update iterations, the basic algorithm has still not reached the correct updated paramete
values, while the modified algorithm with its consistent linearization has converged to within 1% of the

correct values in less than 30 iterations
B. Experimental Data: LADDER Structure

The experimental example problem is a tubular welded frame composed of thin-wall, rectangular steel
tubing formed into a symmetric two rung ladder and representative of an automotive engine support. The
test setup is shown in Figure 2. The structure was instrumented with 96 accelerometers grouped in 16 lo-
cations in order to extract both translational and rotational response at beam cross-sections throughout the
structure. Excitation was effected through the use of an impact hammer and frequency response function
(FRF) data were obtained using standard data reduction techniques. A modal model was then obtained us
ing Polyreferenc® as implemented in SDRC's TDAS software package.

The finite element model of the structure is shown in Figure 3; it is a NASTRAN model consisting of
CBEAM elements, with spring elements introduced to model the joint compliances. A detailed illustration
of the modeling of the welded joint is shown in Figure 4. The goal of the model updating was primarily to
determine the unknown joint compliance parameters, and to adjust the basic properties, in order to corre-
late the first 14 modes identified from test. A description of the nine design parameters considered in the
updating analysis is given in Table 2. GRID locations were established to coincide with the physical loca-
tions of the accelerometers and these GRIDs were attached to the beams via multi-point constraints. The
use of CBEAM elements was dictated by the need to correctly model the torsional inertia of the cross-sec-
tion. The accelerometer masses were also incorporated into the model. The correlation of the modal pa-
rameters between the test-identified modes and the initial analysis model is documented in Table 3.

After attempts to reconcile the model using the basic SB-EBE procedure failed, the modified algorithm
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Table 2: Description of Modeling Parameters for Update

Parameter Description (x,y,z refer to Figure 4) Initial Value
6.01e+6 N/mm

6.01e+6 N/mm

Kux Localized joint spring in x-translational direction

Kuy Localized joint spring in y-translational direction

Kuz Localized joint spring in z-translational direction 6.01e+6 N/mm
Kox Localized rotational joint spring about x-axis 2.53e+8 N-mm
Key Localized rotational joint spring about y-axis 1.96e+8 N-mm
Ko Localized rotational joint spring about z-axis 4.80e+8 N-mm
Iy Area moment of inertia about weak axis of tube 3.11e+5 mm™4
Iy Area moment of inertia about strong axis of tube 5.89e+5 mm™4

Torsional constant of tube 6.15e+5 mm~™4

Table 3: Initial LADDER Model/Test Comparison

Test Test Model Model %difference Modal
Mode Frequency Mode Frequency Frequency Assu.ran'ce
(Hz2) (Hz) Criteria
1 78.9674 1 72.3633 -8.36 0.9973
2 170.6259 3 174.9456 2.53 0.9963
3 174.4670 2 161.5404 -7.41 0.9934
4 214.7231 4 206.3898 -3.88 0.9981
5 250.9062 5 255.1062 1.67 0.9951
6 312.1717 7 318.6140 2.06 0.9580
7 315.7890 6 312.8396 -0.93 0.9516
8 317.7661 9 368.6281 16.01 0.9486
9 330.2652 8 333.6956 1.04 0.9968
10 432.5194 10 451.6765 4.43 0.9937
11 518.5953 11 534.4661 3.06 0.9890
12 563.6540 14 806.4039 43.07 0.8115
13 612.8141 12 631.6433 3.07 0.9816
14 674.3648 13 678.9766 0.68 0.7993
was developed and applied to this problem. Initially, it was found that the joint spring pardfygters and

K, had insufficient sensitivity to the measured modal parameters to be effectively estimated. Therefore,
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those parameters were fixed for the duration of the updating procedure at their initial values, given in Table
2. The update evolved as follows: the joint rotational spring parameters were estimated based on the first
8 flexible modes with the model statically reduced to the 96 sensor DOF. This implies that no mode shape
projection was performed. Then, cross-sectional paramigters J and , which are the area moments of
inertia and torsional constant of the beam elements, respectively, were added and estimated along with
joint rotational springs using test modes 1-9 with the model statically reduced to the sensor DOF. The final
values were estimated based on modes 1-12 with the same paramet&ra,plus and using the model re
duced to measured DOF plus torsional DOF for model grids. This final estimation thus required that the
mode shapes be projected. The procedures used to determine the covariance matrices for the analysis a
described in Appendix A.

The resultant parameter values are given in Table 4. The correlation of the updated model to test for

Table 4: Parameter Update Results for LADDER Structure

Parameter (relati\l/:(ient?)d I\r/]ﬁ:gg Initial COV  Updated COV

Kuy 0.4250 100% 0.49%

Koy 0.2580 100% 0.00153%

Key 104.0 100% 3.58%

Ko, 1.4621 100% 1.39%

4 0.9415 3% 0.00663%

Iy 0.9178 3% 0.0191%

J 1.0091 3% 0.00661%

the first 14 modes are documented in Table 5. Observe that the frequency errors have been reduced fron
a maximum of 43% to below 4%, while the mode shape correlations have been maintained or slightly im-

proved. Note also from the parameter update results that the updated coefficients of variation (COV),
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Table 5: Final LADDER Model/Test Comparison

Test Test Model Model %difference Modal

Mode Frequency Mode Frequency Frequency Assu_ran-ce

(H2) (H2) Criteria
1 78.9674 1 78.8034 -0.21 0.9978
2 170.6259 2 169.6736 -0.56 0.9963
3 174.4670 3 174.6665 0.11 0.9931
4 214.7231 4 218.2671 1.65 0.9984
5 250.9062 5 249.0289 -0.75 0.9957
6 312.1717 6 307.9859 -1.34 0.9894
7 315.7890 7 315.5987 -0.06 0.9789
8 317.7661 8 323.0028 1.65 0.8792
9 330.2652 9 324.1070 -1.86 0.9521
10 432.5194 10 435.3196 0.65 0.9955
11 518.5953 11 514.9591 -0.70 0.9894
12 563.6540 12 542.8199 -3.67 0.8724
13 612.8141 13 615.0687 0.37 0.9732
14 674.3648 14 673.2796 -0.16 0.8250

which is the standard deviation of the parameter expressed as a percentage of the parameter value, is Sic
nificantly smaller than the assumed initial COV. This implies that the parameters were highly sensitive to
the modal data used in the estimation. Of course, the updated COV are directly a function of the assumed
initial COV and the assumed variances of the experimental data, and so can only be considered relative tc
those assumptions. In conclusion, the present modified algorithm performed very well using the experi-
mental data, resulting in a highly accurate updated model. One verification of the model accuracy is the

improvement in the correlation of modes 13 and 14, whose errors were not used in the updating process.

VI. Concluding Remarks

An algorithm for updating finite element models using modal data has been presented. The algorithm

minimizes a generalized dynamic residual which is a function of the experimental modal parameters and
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the model mass and stiffness matrices. The present algorithm is a modification of a previous method for
sensitivity-based element-by-element model updating and incorporates a generalized error weighting,
consistent linearization and Bayesian estimation. The algorithm has been demonstrated on numerical anc
experimental data and has been shown to be an efficient and effective approach for estimating parameter:
to reconcile test and analysis models.
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Appendix A: Determination of Covariance Matrices for Experimental Example Problem

The covariance matrices of the experimental parame(DQJnﬁ, Qg@d were not directly available
from statistical analysis of the data. Instead, the covariance matrices used by the algorithm were deter-
mined as follows. Two sets of frequency estimates were obtained by curve-fitting the same frequency re-
sponse functions using two different modal parameter estimators. The first set are the frequencies obtainec
via Polyreferenc® and given in Table 3, while the second set was obtained using a time and frequency
domain procedufé. Assuming the experimental frequency errors were normally distributed across the
modes, a variance for the distributi@i , was estimated from the differences between the frequency sets.

This variance was estimated to @(2% = 0.114q rad s)2 . The covariance n(agjx is then given as
Q , = 46202 +2(c2)l (37)
G w W

whereQ? = diag(wéi) is the diagonal matrix of the test eigenvalues.

The covariance matrix for the experimental mode shapes was obtained by assuming an expected value
for the MAC!4 and relating that to an assumed error normally distributed across the elements of the mode
shape vector. Given this assumption, the covariance matrig for 2° s

T

Q, =0
@i N,—1 0

(38)

For the present analysis, the expectation for the MAC was assurigt#sC ] = 0.9990 for all modes.

The physical interpretation of this procedure is as follows: assume a series of modal tests on the same
structure were performed, each leading to an estimate of the mode shapes with respect to the same set «
measurement points. From this series of tests, a mean value for each of the mode shape vectors can be o

tained. Then the MAC can be computed between each test mode shape and the mean mode shape from tt
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series of tests. The parameEmMAC] in Egn. (38) is the mean of the computed MACs across the series

of tests. Specifically, fok tests,

1 k ‘ (T~ ‘
E[MAC] =%

_1 (J)
, = = Z (39)
_1( (nT J))([pl [p) @ k

ThusE[MAC] is an expression of the uncertainty or error between different estimates of the same set of
modal vectors, and by assuming a normal distribution of errors across the measurement points, is relatec
to the covariance matrix by Eqn. (38).

The initial variances of the parameters were obtained by assuming that the initial joint spring distribu-
tions were normal and centered at the initial parameter values with standard deviations equal to 100% of
the parameter value. The beam area distributions were assumed to have standard deviations of 3% of thei
initial values. All initial covariances between the parameters are assumed to be zero, such that the matrix
Qp is diagonal with the variances of each of the parameters on the diagonal. Assuming a normal distribu-
tion for the parameters is not technically correct, since it allows for the possibility of the parameters taking
on negative values which is not physically possible. Using normal distributions is simply a convenience

which simplifies the Bayesian estimation to the least-squares form of Eqn. (34).
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Figure 1: Convergence of Parameters for Numerical Example
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Figure 2: Modal Testing Setup for LADDER Structure
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